[image: image1.jpg]vs,v
A CC

LEARNING
SOLUTIONS




ACC COURSE OUTLINES


Course Title: 
Object-Oriented Software Development

Course Code:

ACC OOSD-2

Course Duration:
3 Days
Course Venue:

 Instructor Led, Lecture
Course Overview

This course teaches object-oriented principles and practical development skills. The course is principally aimed at the needs of development software engineers. Concepts are described from that perspective and the focus is on this view of the development cycle. Consequently, the course teaches how to produce a good, robust class diagram with other diagrams in support of this. While the course is independent of any particular object-oriented method, notation is represented using the industry standard Unified Modeling Language (UML).

 The course starts with the setting of the system scope using Use Cases. The aim of the course in this area is to show students how Use Cases are constructed so they leave with the ability to read Use Cases. 

The course then moves into Object Modeling using CRC cards as the primary vehicle. Students have several opportunities to produce class diagrams with supporting sequence and collaboration diagrams. Time is set aside to compare and contrast the various class diagrams to allow the delegates to develop the skills to pick up good design practices - allowing them to later build software systems with the productivity, quality and reuse benefits offered by object technology. Design Patterns are also a feature of the course. Students will understand how these fit into the software development lifecycle.

Finally, there is an introduction to the real world of code, persistence, middleware and management issues. There is some degree of "example by code"; although the course is essentially language-neutral, the code snippets (in Java and VB) will help clarify and consolidate the principles. These code snippets are deliberately kept elementary.
Key Benefits 

· Describe object technology principles and use the vocabulary

· Read Use Case Diagrams & appreciate the flow into the next stage of the life cycle.

· Model application objects using a behavioral approach, CRC techniques, class diagrams, sequence diagrams and collaboration diagrams

· Understand interfaces, polymorphism, encapsulation and inheritance

· Appreciate the issues raised by storing objects on relational databases

· Appreciate how modification of the object model may maximize the benefits of middleware technologies.

· Feel confident in participating in an OO development team

Who Should Attend

The course is principally aimed at the s/w development community (architects, designers, programmers) who has solid project experience in traditional s/w. The course particularly covers the needs of those transitioning to the OO World from such a background plus those who have worked with an OO Language and wish to understand how to leverage the wider benefits.

Prerequisites

You will need knowledge of software engineering. This course is geared towards developers and although knowledge of an OO language is not mandatory, delegates with some knowledge of Java (or C++) or VB will find this course especially useful. Such knowledge might be obtained by attendance on one of the QA Java or VB language courses.

Recommended Follow-On Courses

· Java/VB Language course, possibly advanced

· CORBA or COM

· EJB

· .NET Courses

Object-Oriented Software Development (OOSD-2) Continued
Course Contents

Defining the Scope

· Importance of a clearly defined system scope

· Building a Use Case model

· Use of Scenarios and Activity Diagrams

· Introduction to the Data Model to record the "statics" of the problem domain.

Identifying Objects

· Collecting information

· Defining an object's name and responsibility

· Modeling using CRC (Classes, Responsibility and Collaborators)

· Role-playing to verify the model

· Conversion of the CRC model to a starter Class Diagram

· Formalize the Class Diagram and validate with Scenarios and Sequence Diagrams / Collaboration Diagrams

OO Language Aspects

· How the OO principles place requirements on the OO programming languages

· Illustrations for all the OO constructs

· The appendix contains mappings from UML to Java, VB & C++

Managing Complexity

· The Class Diagram notation for interfaces, polymorphism, inheritance & aggregation

· Benefits

· Design Patterns

· State Charts (the UML Finite State Machine)

Design Patterns

· State Pattern

· Factory Pattern

· Proxy Pattern

Design Issues

· Saving to relational or object databases

· Operating across many machines

· 'n' Tier systems

· Components 

Middleware 


2


© 2003 Advanced Concepts Center, LLC; All rights including trade secret rights reserved.

