The Ins and Outs of Process Construction

(Reproduced with permission from the Cutter IT E-Mail Advisor)

B. Henderson-Sellers and M. Hein
Would you hire a software developer without some sort of assessment – some sort of selection process? Would you choose where to take your next (probably expensive) family vacation without identifying the requirements of each family member and without being systematic about selecting the duration, a location, flight times and the travel agency? Would you get out of bed each morning with no notion of how you were going to get dressed, gain sustenance (breakfast and coffee for instance) and travel to your place of employment?
All of these need a repeatable process: “the way you do things”. It includes a number of tasks (switch on the coffee machine, put in beans, add water etc.) and a set of steps by which you do each of these tasks. There are outputs and deliverables (your breakfast bowl of cereal being delivered to you, the customer). There is also, if you are lucky (or determined) a sense of assessable “quality” about the way you tackle each of our exemplar jobs. You will notice these processes are repeatable in our lives because they work for us. And they are ingrained – we don’t even have to think about the tasks as we perform them.

So how can you say that you would contemplate building a sophisticated piece of software, perhaps software upon which your life depends, without using the same approach? You need a software process that is repeatable and ingrained (software developers should be free to concentrate on the product being produced, not think about or get side-tracked by having to invent a process or to conform to a process ill-suited to their needs). The software process should meet our task, quality, cost, and schedule requirements just as our personal processes do.

By the way, you might know this software process as method or methodology – the three words do tend to get interchanged unfortunately. One discriminant is to consider the process as focussing on the temporal ordering of tasks and activities with methodology adding the techniques by which these tasks are accomplished plus the work products that are produced. There is also argument about whether product aspects should be included under the heading of process. So it’s a bit of a terminological minefield. But let us not allow this confusion to obscure our main message: PROCESS IS IMPORTANT for building software too.

Actually, all software developers do already use process; it’s just that for many organizations, the process that is used is secret to one individual or one project team. Such a secretive approach can actually work for a single time development effort if the development team stays intact. But, the reality is that products have a lifecycle of multiple versions/multiple years and product teams do move on to other products and organizations. Hence, what we are advocating is sharing of that process; making it a product and organizational standard.

So, you’ve decided to take our advice and have an organizational standard process – but where does this process come from, you now ask? Where and how do we acquire it?

There are several possible answers.

1. You might search out a process that has been designed exactly for your kind of product development and environment. For example, there are processes targeted towards real-time software development; for small agile projects; for database-intensive systems and so on. These processes have no fat: nothing beyond what you need for that particular domain. Furthermore, since they tend to be tailored to one specific domain, it is unlikely that they will fit *your* project without some sort of adjustment. In other words, these processes are not modifiable or extensible. This is also of importance if, in the future, your requirements change. Overall, they may be “too small” to do the job for all of your development efforts.

2. Or you might choose one of the all encompassing, humungous processes that clearly contain what you need because they include what everyone else needs as well. Here, you have the challenge of ensuring that the bits you don’t need are removed and, since such large processes are generally found to be highly interconnected, that is not an easy task. They are also typically fairly expensive to purchase and the vendor seldom tells you about the cost of tailoring down their offering to your particular situation. In this case, the process is “too big” for your development efforts.

3. Or you may choose to create a “just right” methodology (our recommendation) – from a reusable library of process components - that is the best fit for all of your development efforts. This is called process engineering or method engineering. There are two things you need to consider when creating a “just right” methodology:

a. You meed to choose (and possibly tailor for multiple types of development efforts) your current in-house best processes that you want to include in your methodology. These processes have the advantage of proven success, familiarity and can become ingrained more quickly within your project teams.

b. You need to augment your in-house practices (in areas you are lacking) with industry best practices that have proven success within multiple organizations. You need to get access to a database, library or repository (three synonyms) of method or process fragments (sometimes called method chunks). You can think of them as process “components” – if you’ll allow us to adopt the buzzword from CBD (component-based development). You choose the ones that suit your situation and knit them together to construct the “XYZ Corporation’s standard methodology”. This takes some small effort, usually a few person weeks, but the end result is a method that has ONLY the process components that are essential for you and no extra fripperies.
For those in the “ISO community”, this will sound somewhat familiar since ISO12207 and ISO15504 follow this kind of approach. However, these standards, together with SEI’s Capability Maturity Model, have tended to be used more as a “mirror” to reflect the extent to which the individual process components have been successfully utilized rather than as a way of creating the process itself.

For those in the “OO community”, this will sound familiar since, for example, the OPEN Process Framework (OPF), with which we must declare some involvement, also follows this approach. The OPF repository contains well-defined process elements (activity descriptions along with specifications of tasks, techniques to accomplish the tasks, roles that people play, the work products they create and manage and so on) from which your own particular instance of OPEN is created.

Is our job done when we finish creating our “just right” methodology? Unfortunately we tend to think our job is done when the creative work is completed, but two very important steps need to follow:

1. We have to take steps to ensure that the methodology becomes ingrained into our development cultures and have it be used by all product teams. A good methodology is one that is voluntarily used – you have to give people a reason to use it through demonstrated success. This requires formal training and mentoring for trial projects – where we have the opportunity for methodology refinement.

2. For every project, the team has to apply JUDGEMENT and choose which methodology components will be applicable to that project. We have to remember that all products and projects are different and will have specific product content and project quality, cost and schedule constraints. These constraints will dictate methodology component choices.

Is process engineering successful? Certainly, but it takes some commitment from management to take (and stick to) this path – it always seems much easier to buy something off the shelf, even if it doesn’t fit! We have helped organizations engineer their own process highly successfully. We have found from our own experience that the project teams in such an organization readily gel and that in itself makes for higher productivity and a more stable and enthusiastic work force.

So make your software development experience even more enjoyable – as well as increasing quality, productivity and time to market. Consider constructing (and using of course!) your very own process using a process engineering approach.

Further reading:

Brinkkemper, S., 1996, Method engineering: engineering of information systems development methods and tools, Inf. Software Technol., 38(4), 275-280

Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework – An Introduction, Addison-Wesley

Hein, M., 1998, The Blame Game, – roadblocks (and remedies) to process improvement, http://www.Heinsights.com
Hein, M., 1994, To Build or Buy a Software Methodology– general characteristics of a good methodology and comparison to existing vendor methodologies, http://www.Heinsights.com
ISO/IEC 12207, 1995, Information Technology – software lifecycle processes, International Organization for Standardisation

ISO/IEC TR 15504, 1998, Information Technology – software process assessment, in 9 parts, International Organization for Standardisation
OPEN website at http://www.open.org.au and especially link to Firesmith’s OPF website at http://www.donald-firesmith.com/

Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D. and Chow, L., 2002, Organizational transition to object technology: theory and practice, Object-Oriented Information Systems (eds. Z. Bellahsène, D. Patel and C. Rolland), LNCS 2425, Springer-Verlag, Berlin, 229-241

1

